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Abstract

The key objective in fishery management is to maximize landings (or economic value)

on a sustainable level. This can be managed using either effort or quota control mechanisms.

Sustainability can be interpreted in different ways and is subject to different constraints.

Traditional techniques are often applied in equilibrium settings and relate to maximizing

production, using a Y/R or SSB/R function. These techniques have been developed in a

single-species setting (see however MSVPA) even though many fisheries take many species

simultaneously. But even in a single species setting, the traditional techniques leave much to be

desired as these techniques do not always yield a clearly defined maximum. In addition, the

theory underlying the techniques is brought into question by the very large variability in real

data fitted to any of the techniques.

The current paper will outline the fundamentals of a stock rebuilding framework with

clear optimality by controling fishing effort (or fishing mortality) and maximizing landings (or

economic value) based on nonlinear optimization using algorithms from economical control

theory. For illustration purposes we give a simplified quasi-realistic multispecies example with

five groundfish species.
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Introduction

The improvement of fishery-management information is a complex undertaking due to

- complexity of fishery management models

- uncertain statistics of the observations and sampling procedures and 

- the role of the ocean environment.

These elements are also interrelated. For instance, the complexity of fisheries

management stems partly from the dynamic nature of the marine environment. But also

numerous interest groups are involved and thus interact with different objectives. At present,

the fishery management is usually performed in four major steps (see Fig. 1):

(1) collecting population relevant data (commercial, market sampling and research

survey data)

(2) estimating the relevant population parameters (stock abundances, fishing

mortalities, etc.)

(3) predicting the future and simulating scenarios based on different management

options and on the results of step 2 (catch-effort or biomass-effort relationships)

(see Fig. 2)

(4) under the given circumstances, taking the most plausible result(s) of step 3 as

optimal management strategy.

Currently, the commercial catch information is calibrated by survey information as

surveys are to some extent standardized and normalized. The estimated parameters are usually

stock sizes in numbers and fishing mortalities by age and, dependent on the type of model,

sometimes other parameters such as catchabilities. Beside problems such as data inconsistency,

their relatively limited temporal and spatial resolution, ignoring the environment, not

integrating species interactions, one major problem seems the transition to get from
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retrospectively estimated parameters to a future oriented medium to longterm management.

Potentially, this can be done either by using the power of a retrospectively oriented prediction

model to forecast the future, or by using some tool for generating scenarios. Traditonally, these

scenarios are generated using some kind of analytical MSY approach usually being based on

some type of catch and effort curve. This paper is intended to bridge this gap introducing a

numerical procedure using a non-linear optimization algorithm which we adopted from

econometric control theory. The approach is fairly open and intended to be a framework for

rebuilding stocks. Because of it's open framework nature it can incorporate many aspects as

outlined above and thus can overcome some of the important problems.

Methods

The theoretical framework for our target rebuilding approach

The key objective in fishery management is to control fishing effort in order to

maximize landings (or economic value) on a sustainable level. However, sustainability can be

interpreted in different  ways and is subject to different constraints. To accomplish a sustainable

fishery a set of control mechanisms has been developed by the various management agencies.

These mechanisms include:

- fishing capacity restrictions: fishing permits limit the number of fishing vessels, the size

of a vessel, the number of crew a vessel can carry, and the length of time a vessel can

fish (fishing effort such as the number of days-at-sea (DAS))

- gear restrictions: the type of a gear, it's size, it's mesh size, the number and length of

hooklines or gill nets used, the number of hooks per meter hookline, etc.

- area specific restrictions: controlling where, when, and for how long fishing can take

place
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- catch restrictions: quotas (total allowable catches (TACs)), limitations regarding by-

catch ratios, discarding, highgrading, etc.

Our rebuilding model addresses step (3) of the stock assessment and management

procedure as mentioned in the introduction, i.e. the simulation of scenarios based on varied

management options to derive the optimal yield-effort constellation. But unlike traditional

approaches, which derive a MSY proxy by means of the catch-effort diagram (i.e. some proxies

for MSY and FMSY), we will use tools adopted from economical control theory or nonlinear

econometrics to develop the optimal management strategy, for instance, for groundfish stocks

(see our example later in this text). This perspective also allows us to make the precautionary

approach an integral part of the control procedure.

The idea and basic outline of the rebuilding model is as follows (see Fig. 6): suppose we

have a planning horizon of 10 years, encompassing the years 2005 to 2014. This period starts

with an initial multi-area, multi-species and age-disaggregated biomass in 2004 (i.e. biomass

resolved by area, species, age class) and ends with a target biomass in 2014. Although the

rebuilding period can be less than the planning horizon and may be variable among species,

herein we define them as equivalent and the same for all species. The initial biomass is the last

retrospective year's biomass "estimated" by the modeling procedure used (i.e. by methods such

as ADAPT (see Gavaris 1990), statistical catch-at-age models (Deriso & Quinn 2???), or the

Kalman filter (see, for instance, Harvey 1989)). The target biomass is the rebuilding biomass to

be met at the end of the rebuilding period which is set by the fishery managers. This could be,

for instance, the target biomass derived from the precautionary approach (BPA). We then track

the annual biomass development subject to fishing activities during the rebuilding period

(planning horizon). As input we thus allow some fishing effort (for instance, in terms of days-

at-sea; or some fishing mortality) and will get some annual yield (split up by area, species, and
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age class of concern) as output. These fishing activities are restricted by boundaries for the

fishing effort (or the fishing mortality, for instance, using FMSY as some upper limit). Such

constraints can arise due to biological limitations resulting, for instance, from bycatch,

recruitment, rebuilding issues, etc.. Under this framework the optimal solution in terms of effort

allocation will be determined by maximizing the total yield subject to these constraints (i.e.

within these effort boundaries). The framework must be set by fishery managers through the

definition of limiting fishing effort (or fishing mortality values) and rebuilding targets. In other

words, the objective is to find the optimal constellation of fishing effort f (or fishing mortality

F) values by area, species or stock, age, and year which maximizes the total yield (in physical

or economical units) at the end of the planning horizon (or rebuilding period).

Hence, the control or instrument variable is the fishing effort f (or the fishing mortality

F), the objective function is the total yield in physical or monetary units being subject to

maximization, the constraints are, for instance, that:

- "one ton of haddock will have X tons cod as bycatch so that the catch of cod must be

limited to 50 kg per trip" and/or

- "by 2014 the SSB of cod must be equal or larger than the set rebuilding SSB target"

and/or

- "by 2007 the SSB of haddock must be equal or larger than the set rebuilding SSB target"

and/or

- "the fluctuation of the annual total catch should be minimal to ensure a relatively stable

income for the fishermen".

Closed areas or seasons can simply be implemented as effort constraints by setting days-

at-sea to 0 (DAS = 0) either constantly or periodically in some area of concern. Thus, the

principle idea is to simulate scenarios and iterate model parameters as long as these are non-
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optimal in terms of an optimization criterion.

Our rebuilding framework can be implemented numerically using algorithms based on

methods of nonlinear optimization. Thus either maximization or minimization algorithms can

be used to optimize the objective function; in case of minimization algorithms only the sign of

the optimization criterion must be reversed as the goal is maximization of the function. A large

set of different algorithms with different requirements do exist and can be found, for instance,

in literature related to numerical mathematics; but also program implementations (procedutres,

subroutines), for instance, for MATLAB or SAS do exist. Anyhow, during the search process,

an iterative process is used to return the objective function’s value for each iterated alternative.

This iterative approach is sometimes called simulation, so that the entire algorithm can also be

called simulation based optimization (Azadivar 1992). It is usually necessary to initialize the

algorithms by start F (or f) values. Some of the nonlinear optimization algorithms (e.g. the

Nelder-Mead or the Dual-Quasi-Newton Optimization Algorithms) function without the need

of specifying derivatives (e.g. without implementing a Hessian or Jacobian matrix). We use

SAS version 9.1.3 , specifically the integrated matrix language SAS/IML (SAS Institute Inc.

1999), for solving the equations because of its ability to manipulate large-scale matrices while

at the same time having the simulation embedded into a macro-based statistical environment

easily allowing an alteration of options and of carrying out sophisticated statistics.

For the following description of model features suppose we consider one species in one

specific area which leads to the set of equations below. Note, although all subsequently stated

model equations could be easily extended and implemented using age, year, area, and species

disagregated values and thus subscripts, for convenience and legibility we suppress the

subscripts for area and species in most cases presented herein except where necessary. In order

to be illustrative, also the quasi-realistic example that we finally present in order to demonstrate
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(1)

(2)

the theory will focus on a simplified 5 species (6 stocks) situation in the Gulf of Maine and

Georges Bank area. Parts of the theory as outlined below was already presented in an ICES

paper (see Gröger et al. 2004).

On the computation of physical yield and its maximization - The central equation for

calculating the annual (physical) yield per area and species is given by Baranov's catch equation

(Baranov 1918)

Sa can either be an element of a matrix of empirical selectivity values or might be

specified by some selectivity function.

Multiplying  the catch in numbers by a body weight vector W with age-specific elements

Wa gives the yield in biomass (kg):

The weight vector W may either contain empirically derived mean weight values Wa by

age and species or values Wa specified by some empirical weight function.

Totaling this up gives the total annual yield that also forms the major component of the
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(3)

(4)

(5)

objective function (optimization criterion) to be maximized:

Since we have to make sure that the total biomass at the end of the rebuilding period

matches the target biomass, some penalty function (per species) must be incorporated (if the

rebuilding period varies for different species then the summation takes place over different time

horizons)

I.e. we penalize differences larger than 0 and ignore negative differences. This can be

judged as some further kind of constraint (multiple constraints beside constraining the f or F

values). The penalty term can be extended by multiplying it with a species-specific coefficient

2species in order to weight some species over others. Setting the elements of the penalty

coefficients' matrix to 1 gives every species the same weight. The objective function then

becomes

This functions means that the total yield will be maximized while at the same time the

values of the species related penalty terms are minimized (i.e. the sum of negative differences

will be minimized as we maximize negative values).

In order to stabilize the expected yearly catches (keeping the catch stable over time is

more attractive for fishermen as it keeps their income constant in time) this objective function
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(6)

(7)

can be further extended by introducing a smoothing term

In contrast to the penalty term above here  we penalize absolute differences, i.e. not only

positive but also negative differences as we want to reduce the fluctation in general. The

smoothing term can be considered one component of multiple constraints. As part of the

objective function it will be subtracted from the given total yield and thus becomes minimized.

Again this function can be extended by multiplying it with a species-specific weighting

coefficient 8species in order to give some species priority over others. The modified objective

function to be maximized then becomes

This functions means that the total yield will be maximized while at the same time the

summed negative terms will be minimized (maximization of a negative value). Rather than

using an arbitrary Yieldy, species
(desired) in Eq. (6) an annual average yield may be used although this

would increase the computer runtime somewhat as the average value will change during each

iteration.We should keep in mind that components of Eq. (7) may be area-specific and thus may

be added up over area to give the overall objective function. It can be further inferred that not

only the rebuilding target but also the rebuilding period might be different for different species.

In such a case the summation in Eq. (3) (2nd sigma sign) but also in Eq. (6) takes place over a
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(8)

(9)

different number of years for different species.

On the computation of economic yield and its maximization - An alternative objective

function (optimization criterion) based on economical rather than physical yield can be derived

following the subsequent procedure. Multiplying the physical yield in biomass (kg) with the

species-specific unit price and totaling this up gives the total annual economical yield that then

forms the major component of a modified objective function:

Here the unit price may differ by species but usually not by area (i.e. it can be

considered constant, for instance, for different areas on Georges Bank). Depending on the

species and on whether the fish is used for consumption or not the unit price may also vary by

other factors such as quality categories or size groups. Furthermore, the unit price may change

with the amount of caught fish (economical rule of supply and demand). This may require to

use a feed back instead of a simple price function (interdependent or simultanous price model)

for calculating the unit price dependent on the amount of fish landed. As for the physical yield

we can add penalty and smoothing terms to the economic yield. If information on costs is

available the objective function might be modified by maximizing the profit as a criterion

instead of the income:

Also here, we should keep in mind that Eq. (8) contains species- and area-specific

elements and thus must be further added up over species and area to give the overall objective
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(10)

(11)

function.

On the computation of stock sizes and incorporation of recruitment - Eq. (1) contains

elements  Na,y of a stock size matrix N. Except from N1,y age-specific stock sizes will be

modelled as

N1,y will be specifically calculated as recruitment of the preceding year either using a

density depending or independent stock-recruitment function; in case of density dependence we

use the Ricker approach for estimating N1,y (Ricker 1954), i.e.

In case of a weaker density dependence we will use the Beverton-Holt approach for

estimating N1,y (Beverton-Holt 1957), i.e.
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(12)

(13)

In both cases simple linearizations exist. If recruitment shows some dependence on

environmental factors we will use an extended recruitment function (see Hilborn & Walters,

1992); for example, using a linearized version of the Ricker S/R relationship the effect can be

incorporated as a linear combination turning the simple regression model into a multiple

regression one:

Ey is some environmental factor such as temperature, c is some regression coefficient, R1

and R2 have the same meaning as in the Ricker curve above. The second part expresses the

environmental factor Ey relative to its average which may in some cases easier to interprete.

Anyhow, the recruitment functions given above can be easily replaced by other types of

recruitment functions such as segmented regression approaches or simply by conditional vectors

of discrete empirical values.

On the computation of biomass and spawning stock biomass - The spawning stock
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(14)

(15)

(16)

biomass SSBa,y will be calculated taking into account the age-specific maturity and weight

pattern

which, if summed up over age, is giving the total annual spawning stock SSBy. Consequently,

the biomass Ba,y is being derived by

which, if summed up over age, gives the total annual biomass By.

On the incorporation of technical and biological interactions - Species interactions can

be addressed in different ways, dependent on whether we consider technical (e.g. bycatch

issues) or biological interactions (e.g. predator-prey interactions). Even then further differences

in approaching this issue do exist. Technical interactions can be incorporated using a simple

bycatch matrix containing values of observed proportions (ratios per target species) of caught

species sorted by target species in the fishery. If we at the same time take into account the age-

specific selection pattern, this then leads to the following re-formulation of the fishing mortality

problem
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(17)

(18)

The multi-species interactions on recruitment level can be incorporated in a number of

different ways, for example, by using a linearized version of the Ricker S/R relationship for

haddock in which 2-year old cod feeds on haddock recruits (see Hilborn and Walters, 1992)

Also incorporating predator-prey relationships on a population level in a later stage is in

principle not difficult; for example, this can be done by splitting up the natural mortality into

two components such as

The real difficulty arises from the question, how to estimate the natural mortality

components  in terms of model parameters. In order to do so, we will partly consider species

correlations based on our acoustic-optic measurements. Simultanously, as in case of the

traditional MSVPA we will inter alia consider stomach contents, consumption rates, etc.. Both

sources of information will be synchronized to derive empirical (synoptic) relationships

between species correlation coefficients and predator mortalities.

On the conversion of fishing effort into fishing mortality - The conversion of fishing

effort f (for instance, DAS) into fishing mortality F is another important issue to be considered.

The reason for this is, that in contrast to fishing effort, which is the instrument variable whose

values being set by fishery managers, is not the direct model parameter to be estimated and

optimized. This is the fishing mortality F. We thus have to take into account the catchability q
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(19)

(20)

(21)

which is the interfacing coefficient between both quantities, i.e.

The catchability includes both biological and technological effects that are sometimes

formally decomposed into the two separate components

where the first component represents the availability of fish in the swept area of the bottom

trawl, and the second a quantity which measures the gear efficiency. The availability is assumed

to be biologically triggered, e.g. species, size (age), area and time dependent; whereas the

efficiency is assumed to be ship, gear, species, size (age), and area (bottom trawls !) dependent.

In most cases it is practically difficult or even unrealistic to determine q, never mind to

decompose it in it's components. That is why researchers often consider both coefficents

q(availability)  and q(efficiency) as constants and set them to 1. However, the catchability could be

derived from area- and time- disaggregated industry-based surveys that may be compared and

calibrated with standardized NMFS (National Marine Fisheries Service) surveys. The basic idea

would be to estimate the ratio (see for instance, Harley and Myers 2001, Walsh 1996)

where the expected density values may be derived from scientific survey CPUE data using a

krigging method (Stein 1999); these data may be taken, for instance, from NMFS. In the case

that these data are not age-based, information from selectivity experiments could be used and

the estimated catchability coefficient multiplied with the derived selectivity pattern to get an
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(22)

age dis-aggregated catchability, i.e.

The uncertainties may be investigated based on bootstrapping procedures using

stochastic rather than deterministic functions.

Fig. 4 below summarizes the linkages between the above described equations and thus

gives an overview of the underlying numerical structure the control theoretical algorithm is

build upon.

A quasi-realistic example for the Georges Bank/Gulf of Maine area

Data Material - On purpose, this example is supposed to illustrate a simplified

implementation of the theory outlined above to foster its understanding. Suppose we want to

manage 5 species  on Georges Bank (GB) and in the Gulf of Maine (GOM) area where one

species is splitted into two separate components (stocks). It thus focuses on haddock (GB),

yellowtail flounder (GB), witch flounder (GOM and GB together), and American plaice (GOM

and GB together) and distinguishes GB cod from GOM cod; all species/stocks are assessed and

managed by the National Marine Fisheries Service (NMFS) located in Woodshole, MA, USA

where GB and GOM witch flounder but also GB and GOM American plaice are each managed

as one stock as it is difficult to separate both stock components from each other; we thus

consider these also as one stock each. On the other hand, the two cod stocks (GB and GOM) are

separately assessed and managed by NMFS; for computational reasons we apply a trick and

consider them numerically as being two different species in order to allow a simplified

implementation of the bycatch matrix further below. Most of the relevant stock data were taken

from the latest report of the Groundfish Assessment Review Meeting (GARM) for year 2005
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(NEFSC 2005).

In general, we base our scenarios on a planning horizon (rebuilding period) of 10 years,

starting with year 2006. Because of year 2006 being the initial point we took all relevant species

related data from year 2005. All data used are age dissolved consisting of abundance estimates,

weight, partial recruitment, and maturity observations. The abundance estimates are based on

VPA estimates derived from domestic commercial catch data as well as scientific surveys

performed by NMFS. The other data used (weight, maturity, partial recruitment) stem either

from market samplings or from technical experiments prior performed. Both activities were

carried out by NMFS researchers.

The bycatch data used for the bycatch matrix are taken from an industry-based survey

performed by the School of Marine Science and Technology (SMAST) (University of

Massachusetts, New Bedford, MA, USA) mainly on Georges Bank (Rountree et al. 2005). The

bycatch data are used to set up a non-symmetric diagonal matrix of technical interactions (see

equation (16)) whose cell entries consist of normalized fractions of bycatches per each bycatch-

species (column) and for each target fishery (rows); thus its diagonal contains exclusively ones;

its off-diagonal values are larger than zero if technical interactions occur and being zeros if no

interactions occur (in case of absolutely no-interactions this matrix is equivalent to a symmetric

identity matrix with all off-diagonal values being zero); it is given here as follows

where the first two rows represent the two cod target fisheries (GB and GOM), and the

bycatch species:
target fishery: GBCo GMCoGBHa YtFl WiFl AmPl
cod GB 1.00 0.04 0.13 0.04 0.07 0.03
cod GOM 0.01 1.00 0.13 0.04 0.07 0.03
haddock GB 0.26 0.01 1.00 0.05 0.07 0.07
yellowtail flounder (GB) 0.12 0.01 0.04 1.00 0.02 0.03
witch flounder (GB+GOM) 0.48 0.02 0.06 0.03 1.00 0.14
American plaice (GB+GOM) 0.16 0.01 0.10 0.02 0 . 3 4
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remaining rows the target fisheries on haddock (GB), yellowtail flounder (GB), witch flounder

(GB+GOM combined), and American plaice (GB+GOM combined). As we consider two

different cod stocks we have to relax the usual definition of a technical interaction which

normally is only applied to different species, but in this case also to two different populations.

As we usually cannot distinguish between individuals of different populations or stocks of one

species in the catch, we utilized results from a cod tagging program (see

http://www.gmamapping.org/codmapping/20893). This allowed us to infer a percentage of 1%

cod moves from the GOM area into the GB area and of 4% cod moves vice versa (see the two

first rows and columns in the bycatch matrix above). We took these fractions as an estimate for

how often GOM cod appears proportionally in GB cod catches and vice versa. As we have no

data how cod technically interact with other species in the GOM area we assumed here the same

pattern as in the case of the GB area although we know that this might be unrealistic as the

species mix in the GOM area differs from that of the GB area. Anyhow, this example is

supposed to be illustrative why we accept this simplifying assumption for now.

We then used the following estimated versions of recruitment functions, again taken

from the most recent GARM report (NEFSC 2005):

Cod (GB): R = 58569.90 × SSB / (182740.90 + SSB) (age 1

in thousands)

Cod (GOM): R = 9854.36 × SSB / (7516.10 + SSB) (age 1 in

thousands)

Haddock (GB): if SSB < 75000 t  then R = 9879

else R = 10615 (age 1 in thousands)

Yellowtail Flounder (GB): if SSB < 5000 t  then R = 13220
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else R = 24444 (age 1 in thousands)

Witch Flounder (GB+GOM): mean R = 32549.5 (age 3 in thousands)

American Plaice (GB+GOM): mean R = 8813 (age 1 in thousands) .

The SSB rebuilding targets (in tons) to be reached at the end of the 10 years rebuilding

period are defined here as species specific biomass reference point estimates (BMSY) again taken

from the 2005 GARM report (NEFSC 2005):

Cod (GB): 216780 t

Cod (GOM): 82830 t

Haddock (GB): 250300 t 

Yellowtail Flounder (GB): 58800 t

Witch Flounder (GB+GOM): 25248 t

American Plaice (GB+GOM): 28600 t .

The lower F limit for the optimization process is set to 0; the upper F limit (see equation

(16)) not to be exceeded during the optimization process are represented by FMSY estimates

taken from the 2005 GARM report (NEFSC 2005). These FMSY values are:

Cod (GB): 0.175

Cod (GOM): 0.225

Haddock (GB): 0.263

Yellowtail Flounder (GB): 0.250

Witch Flounder (GB+GOM): 0.230

American Plaice (GB+GOM): 0.166 .

The values assumed for natural mortality M are also taken from the GARM report and

are 0.2 for all species/stocks except for witch flounder which is assumed to be 0.15.
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The objective function used here maximizes the overall catch at the end of the rebuilding

period and is constraint by rebuilding targets in the following manner:

The six values right after the minus signs are weight factors of the penalty term and

chosen in a way that the species specific rebuilding target biomasses will be reached for certain

at the end of the rebuilding period. Selecting these values required some prior experimenting.

Our strategy of optimizing the F values is chosen to be in compliance with the NMFS

strategy of "constant F values". I.e., per each species we optimized only one F value (instead of

a set of yearly values simultanously) and kept this value interannually constant over the entire

rebuilding period. The background for this is that 

(1) NMFS does not want to control fluctuating F values, but finds it easier to

observe and watch one value kept stable over the entire planning horizon

(2) NMFS expects more stable catch values which would be of some advantage for

the commercial fishermen as it stabilizes their income.

For all our calculations we used the interactive matrix language SAS/IML (SAS Institute

Inc. 1999). We applied the Dual Quasi-Newton Optimization with the Dual Broyden-Fletcher-

Goldfarb-Shanno update to our optimization problem in which the gradients are computed by

the finite difference method (SAS Institute Inc. 1999). Fig. 5 illustrates the outcome for 3 of the

6 stocks and species, respectively. The three panels display the temporal trajectories for

biomass (B, SSB), catch (C), fishing mortality (F, Ftot), and recruitment (R) regarding the three

Objection Function = Total Catch - 2.5 × max(0, 216780 -  SSBGB Cod)
- 2.0 × max(0, 82830 - SSBGOM Cod)
- 3.2 × max(0, 250300 - SSBHaddock)
- 3.7 × max(0, 58800 - SSBYt Fl)
- 10 × max(0, 25248 - SSBWi Fl)
- 2.5 × max(0, 28600 - SSBAm Pl) .
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cod and haddock stocks. In all cases, the left y axis represents the three biomass and catch

related variables (SSB, B, C), the right y axis the two F related variables (F, total F). The two

curves for the F variables (F, Ftot) are assigned the same symbol (a square) to indicate that these

are directly linked to eachother. To distinguish them two different line types were used: a solid

line for Ftot, a dashed line with short dashes for the estimated/optimized F values. The two

dashed lines with no extra symbols are the species related biomass targets (BMSY, long dashes)

and the upper F limits (FMSY, short dashes). All other curves and symbols are directly explained

by the legends on the bottom of the figure.
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Figure captions

Figure 1: Conventional stock assessment and management procedure.

Figure 2: Simplified catch-effort diagram for deriving MSY related quantities and proxies

(MSY = maximum sustainable yield, FMSY = fishing mortality at MSY, BMSY = biomass at MSY,

BPA = precautionary approcach reference point for biomass, Blim = limit reference point for

biomass).

Figure 3: Graphical presentation of the algorithmic rebuilding philosophy (DAS = days-at-sea).

Figure 4: Layout of the structure of the non-linear optimization algorithm showing the linkages

between the various model equations as they appear in the body of the text. The illustration of

the layout is based here on a simplified two-species-two-areas example and a 10-years planning

horizon for which the objective function is to be optimized.

Figure 5: The three panels display the temporal trajectories for biomass (B, SSB), catch (C),

fishing mortality (F, Ftot), and recruitment (R) regarding the three cod and haddock stocks. In all

cases, the left y axis represents the three biomass and catch related variables (SSB, B, C), the

right y axis the two F related variables (F, total F). The two curves for the F variables (F, Ftot)

are assigned the same symbol (a square) to indicate that these are directly linked to eachother.

To distinguish them two different line types were used: a solid line for Ftot, a dashed line with

short dashes for the estimated/optimized F values. The two dashed lines with no extra symbols

are the species related biomass targets (BMSY, long dashes) and the upper F limits (FMSY, short

dashes). All other curves and symbols are directly explained by the legends on the bottom of the

figure.
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Fig. 3
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Fig. 4
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Fig. 5


